

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 2 (6684/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA042711 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks

affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
		notes	
1. (a)	$P(N \ge 10) = 1 - P(N \le 9)$	M1: using or writing $1 - P(N \le 9)$ or	M1 A1
		1 - P(N < 10)	
	= 0.4126	A1: awrt 0.413	

(b)	<i>Y</i> represents number of owls per 200 km ² \Rightarrow <i>Y</i> ~ Po(1.8)	B1: using or writing Po(1.8)	B1
	$P(Y=2) = \frac{e^{-1.8}1.8^2}{2!}$	M1 : for a single term of the form $\frac{e^{-\lambda}\lambda^2}{2!}$ with any value for λ or $P(X \le 2) - P(X \le 1)$	M1 A1
	= 0.2678	A1: awrt 0.268	

(c)	Normal approximation	M1: Using or writing, normal approximation with mean = 450	M1
	$\mu = 50 \times 9 = 450 \ \sigma^2 = 450$	M1: Using or writing the mean = variance. Does not need to be 450. May be seen in the standardisation calculation.	M1
		M1: $\pm \left(\frac{(470 \text{ or } 469.5 \text{ or } 470.5) - their \text{ mean}}{their \text{ sd}} \right)$ May be implied by a correct answer or $z = \text{awrt } 0.92$	M1
	$P(X \ge 470) \approx 1 - P\left(Z < \frac{469.5 - 450}{\sqrt{450}}\right)$	M1: dep on previous method mark being awarded. Using a continuity correction 470 ± 0.5 May be implied by a correct answer or <i>z</i> = awrt 0.92 A1: correct standardisation no need to subtract from 1. Award for $\frac{469.5 - 450}{\sqrt{450}}$ or awrt 0.92 or a correct answer	dM1 A1
	= 0.1788	A1: awrt 0.179	A1
			(6)

Question Number	Scheme		Marks
2(a)		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks		

(b)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a , must use <i>p</i> or $p(x)$ or π	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow $P(X \ge 2) = 0.9198$)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probabillity < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio <u>company's</u> claim is true. Or The new transmitter will reduce the	A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim	
	proportion of houses unable to receive radio	or radio if full context.	

Question Number	Schem	e	Marks
		Notes	
3(a)	$\int_{0}^{2} kx^{2} dx + \int_{2}^{6} k \left(1 - \frac{x}{6} \right) dx = 1$	M1: for adding the two integrals, and attempting to integrate, at least one integral $x^n \rightarrow x^{n+1}$, ignore limits and does not need to be put equal to 1. Do not award if they add before integrating	M1 A1
	$k\left[\frac{x^3}{3}\right]_0^2 + k\left[x - \frac{x^2}{12}\right]_2^6 = 1$ $k\left[\frac{8}{3}\right] + k\left[3 - \frac{5}{3}\right] = 1$	A1: correct integration, ignore limits and does not need to be put equal to 1	
	$k\left[\frac{8}{3}\right] + k\left[3 - \frac{5}{3}\right] = 1$	M1: dependent on first M being awarded, correct use of limits and putting equal to 1.	
		This may be seen as $F(2) = \frac{8}{3}k$ and	dM1
	4k = 1	using $F(6) = 1$ A1: cso answer given so need $4k = 1$	A1cso
	$k = \frac{1}{4} *$	leading to $k = \frac{1}{4}$	
	ion – if they substitute in $k = \frac{1}{4}$ you may award the must say " therefore $k = \frac{1}{4}$ "	e 1 st three marks as per scheme. For the Fi	inal A
(b)	2	B1: cao	B1
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$, ignore limits, may leave in terms of k	M1
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$ $\int k\left(1 - \frac{t}{6}\right) dt = k\left[t - \frac{t^2}{12}\right] + C$ $= kt - k\frac{t^2}{12} + C$	•0	M1 M1
(c)	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^2}{12}\right] + C$	$t^2 \rightarrow t^3$, ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C $\neq 0$) and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate	
(c)	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^2}{12}\right] + C$ $= kt - k \frac{t^2}{12} + C$	$t^2 \rightarrow t^3$, ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C \neq 0) and use F(6) =1 or have limits 2 and x and + "their	
(c)	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^2}{12}\right] + C$ $= kt - k \frac{t^2}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1 \therefore \ C = \frac{1}{4}$ $0 \qquad x < 0$	$t^2 \rightarrow t^3$, ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C \neq 0) and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t ,condone use of x A1: second line correct	
(c)	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^2}{12}\right] + C$ $= kt - k \frac{t^2}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1 \therefore \ C = \frac{1}{4}$ $0 \qquad x < 0$	$t^2 \rightarrow t^3$, ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C \neq 0) and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t , condone use of x	M1
(c)	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[t - \frac{t^2}{12}\right] + C$ $= kt - k \frac{t^2}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1 \therefore \ C = \frac{1}{4}$ $\left(\begin{array}{c}0 \qquad x < 0\\\frac{x^3}{12} \qquad 0 \le x \le 2\end{array}\right)$	$t^2 \rightarrow t^3$, ignore limits, may leave in terms of k M1: attempting to find $\int k(1-\frac{t}{6})dt$ at least one integral $t^n \rightarrow t^{n+1}$ and either have + C (C \neq 0) and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t ,condone use of x A1: second line correct A1: third line correct they may use "otherwise" instead of $x < 0$ or $x > 6$ but not instead of both	M1 A1 A1

Question Number	Schem	e	Marks
(d)	$\frac{x}{4} - \frac{x^2}{48} + \frac{1}{4} = 0.75$	M1: putting their line 2 or their line 3 $= 0.75$	M1 A1
	$x^2 - 12x + 24 = 0$ oe	A1: The correct quadratic equation – like terms must be collected together	
	$x = \frac{12 \pm \sqrt{144 - 4 \times 24}}{2}$	M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation = 0 leading to $x =$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $ leading to $x =$ May be implied by a correct value for x	dM1 A1
	$= 2.54 \text{ or } 6 - 2\sqrt{3}$	A1: awrt 2.54 or $6-2\sqrt{3}$ or $6-\sqrt{12}$. If 2 values for <i>x</i> are given they must eliminate the incorrect one.	

Question Number	Scheme		Marks
		Notes	
4 (a)	0.8	B1: cao	B1

(b) 0.25

B1: cao

B1

(c) $\frac{(0.5-0)^2}{12} = \frac{1}{48}$ or awrt 0.0208	M1: for $\frac{(0.5\pm0)^2}{12}$ or for $\int_0^{0.5} 2x^2 dx - (\text{their } (b))^2 \text{ with some}$ integration $x^n \rightarrow x^{n+1}$ A1: $\frac{1}{48}$ or awrt 0.0208 or awrt 2.08 × 10 ⁻²	M1A1
--	--	------

(d)	P(L > 0.4) = 0.2 Y~ B(30, 0.2)	P($L < 0.4$) = 0.8 $Y \sim B(30, 0.8)$	An awrt 0.123 award B1 M1 A1 B1: using or writing B(30, their P($L < 0.4$) or B(30, their P($L > 0.4$). If they have not written these probabilities in this part use answer from part (a) ie P($L <$ 0.4) = (a) or P($L > 0.4$) = 1- (a)	B1
	$P(Y \le 3) = 0.1227$	$P(Y \ge 4) = 0.1227$	M1: dependent on previous B mark being awarded. Using B(30,P($L>0.4$) with P($Y \le 3$) written or used Or B(30 P($L<0.4$)) with P($Y \ge 4$) written or used A1: awrt 0.123	dM1A1
(e)	$1 - [4 \times 0.4 - 4 \times 0.4]$	$\left[\frac{1}{25}\right] = \frac{1}{25}$ or 0.04	M1: Using 1- F(0.4) or F(0.5) – F(0.4) or P($X \le 0.5$) – P($X \le 0.4$). Must see some substitution of 0.4 A1: $\frac{1}{25}$ or 0.04 only	M1A1
(f)	Po(4)		B1ft: using or writing Po(4) NB for ft they must either write $100 \times$ "their 0.04" and use Poison or write Po("their λ ") Allow P instead of Po	B1ft
	$P(X \ge 8) = 1 - P(X \le 7)$		M1 using or writing 1- P($X \le 7$) If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text{awrt } 1.96}$ or $\frac{7.5-20}{\sqrt{16}}$	M1
	= 1 - 0.9489 = 0.0511		A1 awrt 0.0511	A1

Question Number	Scheme		Marks
1 (01110 01	Notes		
5(a)	$X \sim Po(4)$ $P(X = 0) = 0.0183$ $P(X \ge 8) = 0.0511$ $P(X \le 1) = 0.0916$ $P(X \ge 9) = 0.0214$ $CR \ X = 0$ $X \ge 9$	M1: using Po(4), need to see a probability from Po(4), need not be one of the 4 given here. May be implied by a single correct CR A1: $X = 0$ or $X \le 0$ or $X < 1$ A1: $X \ge 9$ or $X > 8$ Any letter(s) may be used instead of X eg CR or Y or in words	M1 A1 A1
		SC candidates who write $P(X = 0)$ and $P(X \ge 9)$ award M1A1 A0 NB Candidates who write $8 < x \le 0$ oe	
		get M1A0A0	
(b)	$H_0: \lambda = 4 H_1: \lambda \neq 4$	B1: both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a may use λ or μ . These must be seen in part (b)	B1
	There is evidence that <i>Liftsforall's</i> claim is true	B1: ft their CR only, Do not ft hypotheses.Needs to include the word <i>Liftsforall.</i> If no Critical region stated in part (a) award B0	B1ft
	or There is insufficient evidence to doubt <i>Liftforall's</i> claim	or $P(X \le 3) = awrt \ 0.434$ and a correct conclusion.	
<i>(</i>)			54
(c)	0.0183 + 0.0214 = 0.0397	B1: Awrt 0.0397	B1
(d)	$P(B \le 3 B \sim Po(6)) = 0.1512$	M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151	M1 A1
	<i>X</i> ~ B(4, 0.1512)	B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.151") for use they need $(1-p)^4$ or $p (1-p)^3$	dB1ft
		or $p^2(1-p)^2$	
	Alternative method for first 3 marks	or $p^2(1-p)^2$	
	Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$	or $p^2(1-p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849	M1 A1
		M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or	M1 A1 dB1ft
	$P(B \ge 4 B \sim Po(6)) = 0.8488$	M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849")	
	$P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$	M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^4$ or $p^3(1-p)$ or	
	$P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512$	M1: using Po(6) and writing or using P(B \ge 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need (p) ⁴ or p ³ (1 - p) or p ² (1 - p) ² M1: using or writing P(X = 0) + P(X = 1) oe M1: (1-p) ⁴ + 4×(1-p) ³ ×p oe	dB1ft M1 dM1
	$P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889$	M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need (p) ⁴ or $p^3(1-p)$ or $p^2(1-p)^2$ M1: using or writing P($X = 0$) + P($X = 1$) oe	dB1ft M1
	$P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512$	M1: using Po(6) and writing or using P(B \ge 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need (p) ⁴ or p ³ (1 - p) or p ² (1 - p) ² M1: using or writing P(X = 0) + P(X = 1) oe M1: (1-p) ⁴ + 4×(1-p) ³ × p oe A1: awrt 0.889 M1: using or writing	dB1ft M1 dM1
	$P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5$	M1: using Po(6) and writing or using P(B \ge 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need (p) ⁴ or p ³ (1 - p) or p ² (1 - p) ² M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1-p)^4 + 4 \times (1-p)^3 \times p$ oe A1: awrt 0.889	dB1ft M1 dM1 A1

Question Number	Sch	neme	Marks
	NB: All powers of 1 must be simplified for	r the Accuracy(A) marks	
	The full powers of a must be simplified to	notes	
		M1: attempting to integrate	
	$\begin{bmatrix} \nu r^{n+1} \end{bmatrix}^1$	· · · ·	
6(a)	$\left \left \frac{kx^{n+1}}{n+1} \right _{0}^{1} = 1 \right $	$x^n \rightarrow x^{n+1}$ and putting equal to 1,	M1A1
	$\left\lfloor n+1 \right\rfloor_0$	ignore limits	
		A1: correct integration	
	k = n + 1	A1: $k = n + 1$ Do not accept $\frac{n+1}{1^{n+1}}$	A1
(b)			
		M1: Writing or using $\int_0^1 kx^{n+1} dx$,	
	$\int_0^1 k x^{n+1} \mathrm{d}x = \left[\frac{k x^{n+2}}{n+2}\right]_0^1$	ignore limits. Allow $\int_0^1 kx(x)^n dx$	M1A1
	$\int_{0}^{n} \int_{0}^{n} \int_{0$	Allow substitution of their k	
		A1: correct integration $\frac{kx^{n+2}}{n+2}$	
	$=\frac{n+1}{n+2}$	A1: correct answer only- must be in	A1cao
	n+2	terms or <i>n</i>	
	1		1
(c)		M1: Attempting to integrate	
	$\begin{bmatrix} I \\ I \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix}$	$\int_0^1 kx^{n+2} dx, \ x^{n+2} \rightarrow x^{n+3}, \text{ ignore}$	
	$\int_0^1 k x^{n+2} \mathrm{d}x = \left[\frac{k x^{n+3}}{n+3}\right]$	•0	
		limits. Do not allow substitution of k	
		if it has x in it. This must be on its	M1
		own with no extra bits added on.A1: correct answer only	Alcao
			lineao
	$=\frac{n+1}{2}$	SC if they have $\frac{k}{n+2}$ as answer to	
	$=\frac{1}{n+3}$		
		part(b) award A1 for $\frac{k}{}$	
		n+3	
	1		
	$3 (3)^2 3$	M1: using	
	Var $(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$	"their(c)" – ["their(b)"] ² with $n = 2$ or	
		correct Var(<i>X</i>)	M1
(d)		Using $\int_0^1 kx^4 dx - \left[\int_0^1 kx^3 dx\right]^2$ for	M1
		Var(X)	
	$V_{0T}(2Y) = 0 V_{0T}(Y)$	M1. for whiting on which 0 Mar (N)	
	Var(3X) = 9 Var(X)	M1: for writing or using 9 Var (X) or 3^{2} Var(X)	M1
	27		Alcso
	$=\frac{27}{80}$ oe or 0.3375 or 0.338	A1: cso	
	80		

Question Number	Scheme		Marks
	Notes		
7	NB: If there is a fully correct table award full marks.		
	P(10) = 0.2, $P(20) = 0.4$ and $P(50) = 0.4$	B1: using $P(10) = 0.2 (p) P(20) = 0.4(q)$ and $P(50) = 0.4(r)$ may be seen in calculations or implied by a correct probability.	B1
	Median 10, 20, 50	B1: three correct medians and no extras.	B1
	P(Median 10) = $0.2^{3} + 3 \times 0.2^{2} \times 0.4 + 3 \times 0.2^{2} \times 0.4$ or $0.2^{3} + 3 \times 0.2^{2} \times 0.8$	M1: allow if $(p+q+r)=1$ and use $p^3+3 \times p^2 \times q+3 \times p^2 \times r$ or $p^3+3 \times p^2 \times (q+r)$	
	P(Median 50) = $0.4^3 + 3 \times 0.4^2 \times 0.2 + 3 \times 0.4^2 \times 0.4$	look for $\frac{1}{125} + \frac{6}{125} + \frac{6}{125}$ M1: allow if $(p+q+r)=1$ and use $r^3 + 3 \times r^2 \times p + 3 \times r^2 \times q$	See
	or $0.4^3 + 3 \times 0.4^2 \times 0.6$	or $r^{3} + 3 \times r^{2} \times (p+q)$ Look for $\frac{8}{125} + \frac{12}{125} + \frac{24}{125}$	below for how to award
	P(Median 20) =	M1: allow if $(p+q+r)=1$ and use	
	$3 \times 0.2 \times 0.4^{2} + 6 \times 0.2 \times 0.4 \times 0.4 + 0.4^{3} +$	$3 \times p \times q^2 + 6 \times p \times q \times r + q^3 +$	
	$3 \times 0.4^2 \times 0.4$	$3 \times p \times q^{2} + 0 \times p \times q \times r + q^{2} + 3 \times q^{2} \times r$ $\frac{12}{125} + \frac{24}{125} + \frac{8}{125} + \frac{24}{125}$	
	How to award the M marks – Allow the use		
	method marksM1 any correct calculation (implied by correct answer) for $P(m = 10)$ or $P(m = 20)$ or $P(m = 50)$ M1 any 2 correct calculations (implied by 2 correct answers) $P(m = 10)$ or $P(m = 20)$ or $P(m = 50)$ M1 any 3 correct calculations (implied by 3 correct answers) for $P(m = 10)$ and $P(m = 20)$ and $P(m = 50)$ or3 probabilities that add up to 1 providing it is 1 – their 2 other calculatedprobabilities. Do not allow $\frac{1}{5}$ $\frac{2}{5}$ NB if they do not have a correct answer their working must be clear including the addition signs.		
	median1020500.1040.5440.3520r $\frac{13}{125}$ 0r $\frac{68}{125}$ 0r $\frac{44}{125}$	 A1: awrt any 1 correct A2: awrt all 3 correct These do not need to be in a table as long as the correct probablity is with the correct median(10, 20 & 50) NB: Do Not allow the use of 1,2 and 5 for the medians for the A marks 	A2

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom